WEBVTT - This file was automatically generated by VIMEO
0
00:00:00.200 --> 00:00:03.100
Hello, my name is Braden and today I'll be discussing some computer science.
1
00:00:04.700 --> 00:00:07.500
Today, I hope to teach you about three topics
2
00:00:07.500 --> 00:00:10.300
first. We'll be getting straight. What a
3
00:00:10.300 --> 00:00:11.200
binary search tree is.
4
00:00:12.100 --> 00:00:14.900
And then talk about what a breadth-first search is.
5
00:00:15.500 --> 00:00:18.400
We will be discussing how it functions and how it compares to the similar
6
00:00:18.400 --> 00:00:20.000
system called a depth first search.
7
00:00:20.900 --> 00:00:23.300
Ultimately out of this lecture and exercise. I want
8
00:00:23.300 --> 00:00:26.100
you to understand what differs a breadth first search and a depth
9
00:00:26.100 --> 00:00:26.900
first search from each other.
10
00:00:28.700 --> 00:00:31.400
So here's a binary search tree. I want
11
00:00:31.400 --> 00:00:34.200
you to treat this as a visualization of Digital Data as I'll
12
00:00:34.200 --> 00:00:35.900
be working with this graphic throughout the lesson.
13
00:00:36.800 --> 00:00:39.500
These circles will represent individual data out
14
00:00:39.500 --> 00:00:42.600
of a collection that we have to search through using these little lines
15
00:00:42.600 --> 00:00:43.000
that we have.
16
00:00:43.900 --> 00:00:46.700
These letters themselves could be anything.
17
00:00:46.700 --> 00:00:49.300
They're just here to signify that they are
18
00:00:49.300 --> 00:00:50.100
data and they could be anything.
19
00:00:51.100 --> 00:00:54.200
But when you look at this binary search tree, I bet you see a collection of circles with
20
00:00:54.200 --> 00:00:57.200
letters in them and automatically your brain might try
21
00:00:57.200 --> 00:00:58.600
to make sense of this and sort it.
22
00:00:59.400 --> 00:01:02.200
When you see the alphabet you think okay. Well, there's an A and
23
00:01:02.200 --> 00:01:05.600
there's a b and there's a c and we have around system for understanding
24
00:01:05.600 --> 00:01:08.800
this graphic because of the nature of what these placeholders
25
00:01:08.800 --> 00:01:09.000
are.
26
00:01:09.700 --> 00:01:12.400
But please put that aside and remember that these
27
00:01:12.400 --> 00:01:15.100
circles can be anything just as if we were
28
00:01:15.100 --> 00:01:17.700
computer system ourselves is that is how it would be viewing it.
29
00:01:19.400 --> 00:01:22.200
So how can we tell a computer
30
00:01:22.200 --> 00:01:25.200
what order to process the entries of this data and when it
31
00:01:25.200 --> 00:01:26.900
should process any given entry?
32
00:01:27.900 --> 00:01:30.600
And this is important because of the order it
33
00:01:30.600 --> 00:01:33.400
choose to go through our alphabetical entries will vary the efficiency
34
00:01:33.400 --> 00:01:36.200
of our search, which is ultimately the goal of this exercise.
35
00:01:36.200 --> 00:01:39.200
We want to search through that tree is efficiently as
36
00:01:39.200 --> 00:01:39.300
we can.
37
00:01:40.400 --> 00:01:43.500
So our binary search tree showed us circles with letters of the alphabet,
38
00:01:43.500 --> 00:01:46.200
right and for my demonstration, I'll be highlighting to
39
00:01:46.200 --> 00:01:49.600
you the order that the different searching algorithms produce so you
40
00:01:49.600 --> 00:01:50.700
can keep track of what's going on.
41
00:01:51.700 --> 00:01:54.500
For example, it might look something like
42
00:01:54.500 --> 00:01:56.800
this as the final product of the array.
43
00:01:57.300 --> 00:01:59.800
And this will make more sense in a moment is we walk through it.
44
00:02:01.400 --> 00:02:04.100
We're going to be walking through the binary search tree in solving it
45
00:02:04.100 --> 00:02:07.700
as if we were the computer using these two different search algorithms so
46
00:02:07.700 --> 00:02:08.800
you can see how they differ.
47
00:02:09.700 --> 00:02:12.600
We'll be abiding by these four rules of the binary search
48
00:02:12.600 --> 00:02:15.900
tree so we can consistently get the same structure to our results. We
49
00:02:15.900 --> 00:02:19.000
need to start at G. We need to consider all unmarked circles
50
00:02:18.300 --> 00:02:21.300
that connect the current Circle and if we
51
00:02:21.300 --> 00:02:23.800
have a tie we need to prioritize alphabetical order.
52
00:02:24.600 --> 00:02:27.200
Lastly if there are no valid options we need to return to the
53
00:02:27.200 --> 00:02:28.400
circle that we came from. Okay?
54
00:02:29.800 --> 00:02:31.800
So I'll be explaining breadth for a search to begin with.
55
00:02:32.600 --> 00:02:35.300
Breadth first search will try to navigate the tree by always
56
00:02:35.300 --> 00:02:38.100
viewing every viable option that we could possibly go to.
57
00:02:39.100 --> 00:02:42.100
So let's go with it because of rule. Number one. We need
58
00:02:42.100 --> 00:02:45.200
to start at G. This means that the connecting options are
59
00:02:45.200 --> 00:02:47.000
e b and a
60
00:02:48.300 --> 00:02:51.900
Now alphabetical order hmm. We
61
00:02:51.900 --> 00:02:54.800
have a tie. Let's go with alphabetical order. Let's go
62
00:02:54.800 --> 00:02:55.300
with a
63
00:02:56.400 --> 00:02:59.400
now that we're a we have EB and now we
64
00:02:59.400 --> 00:02:59.700
have d
65
00:03:01.300 --> 00:03:03.700
between these we can choose any and we'll go with B.
66
00:03:04.700 --> 00:03:07.200
This means we have e f and D which case will be
67
00:03:07.200 --> 00:03:08.100
going with d.
68
00:03:09.700 --> 00:03:12.700
Which opens up S now s is
69
00:03:12.700 --> 00:03:15.200
pretty far down the road. So let's go
70
00:03:15.200 --> 00:03:18.500
ahead and choose e and afterwards we'll choose
71
00:03:18.500 --> 00:03:21.100
C and I hope you can see what breadth for search is doing here. Let's take a
72
00:03:21.100 --> 00:03:21.800
second acknowledge this.
73
00:03:22.800 --> 00:03:25.400
It's been slowly going top to bottom almost
74
00:03:25.400 --> 00:03:28.000
picking out the things that perceives is the most urgent.
75
00:03:29.100 --> 00:03:30.400
Okay, let's keep that in mind.
76
00:03:31.900 --> 00:03:34.600
after this, we have a choice of F and S and
77
00:03:34.600 --> 00:03:37.100
let's go with f and finally s
78
00:03:38.200 --> 00:03:41.500
Great. So now we have an ended output that reads
79
00:03:41.500 --> 00:03:43.800
gabd ecfs.
80
00:03:44.600 --> 00:03:47.100
And I bring up this output because we can use the string of
81
00:03:47.100 --> 00:03:50.600
letters to help us understand how this system will
82
00:03:50.600 --> 00:03:53.800
differ from our next system depth-first search and let's
83
00:03:53.800 --> 00:03:54.200
get through that.
84
00:03:55.200 --> 00:03:58.600
In a depth first search we will seek to reach the bottom of the graphic
85
00:03:58.600 --> 00:04:01.200
before we span out the varied breadth as
86
00:04:01.200 --> 00:04:03.200
you saw in the previous one. So let me show you what I mean.
87
00:04:04.200 --> 00:04:07.500
Again, we have started G and we have the same choice of e b and
88
00:04:07.500 --> 00:04:11.000
a all the same we'll choose a but with
89
00:04:10.300 --> 00:04:13.400
depth first search. We have to only operate out of
90
00:04:13.400 --> 00:04:16.200
the piece that we just marked until we have nowhere to
91
00:04:16.200 --> 00:04:16.200
go.
92
00:04:17.300 --> 00:04:19.700
That means we're at a and we cannot use the options of G.
93
00:04:20.700 --> 00:04:22.400
from a we have one choice d
94
00:04:23.200 --> 00:04:26.200
from the we have nowhere to go but s since we cannot go
95
00:04:26.200 --> 00:04:26.200
back.
96
00:04:27.400 --> 00:04:30.100
From acids a different story now. We have a choice. We have
97
00:04:30.100 --> 00:04:33.400
C and we have F. So we prioritize alphabetical order and go
98
00:04:33.400 --> 00:04:36.300
with C afterwards we go with
99
00:04:36.300 --> 00:04:36.700
e
100
00:04:37.800 --> 00:04:40.700
Hmm, here's a conundrum. We're on
101
00:04:40.700 --> 00:04:43.200
E, but the only connecting circles are ones that we've
102
00:04:43.200 --> 00:04:46.700
already marked and this means we have to use rule number four and go
103
00:04:46.700 --> 00:04:49.200
back to see still nothing.
104
00:04:49.200 --> 00:04:52.200
Let's go back to sa now we can
105
00:04:52.200 --> 00:04:54.000
go to option f
106
00:04:54.900 --> 00:04:56.800
And from F we can go B.
107
00:04:57.400 --> 00:04:58.700
And now we've completed our search.
108
00:04:59.600 --> 00:05:02.100
But the order was done in differs from the order of the
109
00:05:02.100 --> 00:05:04.800
breadth first search obviously and went down before it went wide.
110
00:05:06.600 --> 00:05:10.200
These two systems created different outputs in their
111
00:05:09.200 --> 00:05:13.000
searching because of the manner in which they search this all
112
00:05:12.200 --> 00:05:15.300
being in the name, right? The depth of depth first
113
00:05:15.300 --> 00:05:18.100
search has an intentionally exclude connections next to it
114
00:05:18.100 --> 00:05:20.700
in favor of finding the harder Doug entries.
115
00:05:21.500 --> 00:05:24.500
breadth first search scans the entries most apparent to
116
00:05:24.500 --> 00:05:26.300
ensure their found quickly and at the top
117
00:05:27.400 --> 00:05:30.400
this means you'll want to use them in different situations based on the needs
118
00:05:30.400 --> 00:05:31.300
of the problem at hand.
119
00:05:33.100 --> 00:05:36.300
So today I hope you learn the basic principles of
120
00:05:36.300 --> 00:05:39.500
traversing a binary search tree and the fundamental difference
121
00:05:39.500 --> 00:05:41.200
between those two core searching systems.
122
00:05:42.200 --> 00:05:45.500
Shifting the order you navigate the tree in by changing the searching
123
00:05:45.500 --> 00:05:49.100
system that you use can make for a more effective search, but you
124
00:05:48.100 --> 00:05:51.100
have to know what you're looking for. So thank you
125
00:05:51.100 --> 00:05:53.000
for watching my video and get searching.

